

Бастион-3 — OPC UA Сервер. Руководство администратора

Версия 2023.3

(29.12.2023)

Оглавление

1 Общие сведения	2
2 Условия применения	2
1 Установка модуля	3
2 Настройка модуля	3
3 Работа в штатном режиме	5
3.1 Получение списка устройств	5
3.2 Получение событий	6
3.3 Получение состояний устройств	8
3.4 Получение параметров устройств	8
3.5 Управление устройствами	9
4 Нештатные ситуации	9
4.1 Порт ОРС.ТСР занят другим процессом	9
4.2 Порт HTTPS занят другим процессом	10
4.3 TLS-сертификат просрочен	10
5 Приложения	10
Приложение 1. Типы устройств ПК «Бастион-3»	10
Приложение 2. Состояния устройств	12
Приложение 3. История изменений	14

1 Общие сведения

Модуль «Бастион-3 – OPC UA Сервер» предназначен для интеграции ПК «Бастион-3» с внешними системами с использованием интерфейса ОРС UA.

Модуль соответствует спецификации ОРС UA и предоставляет следующие возможности:

- Получение списка устройств ПК «Бастион-3»;
- Получение событий устройств ПК «Бастион-3»;
- Получение состояний устройств ПК «Бастион-3»;
- Управление устройствами ПК «Бастион-3».

Общая схема интеграции с использованием ОРС UA сервера ПК «Бастион-3» представлена на Рис. 1:

Рис. 1. Схема интеграции с использованием ОРС UA Сервера ПК «Бастион-3»

OPC UA сервер получает данные об устройствах из ПК «Бастион-3» и предоставляет их в виде дерева ОРС-тегов. Через ОРС UA осуществляется взаимодействие с сервером системы ПК «Бастион-3» для передачи событий, состояний и команд управления. Для взаимодействия со всеми устройствами ПК «Бастион-3» достаточно использовать один экземпляр ОРС UA сервера, независимо от того, куда подключено оборудование в ПК «Бастион-3». ОРС ИА Сервер всегда передаёт сведения обо всех устройствах ПК «Бастион-3», доступ к которым разрешён в параметрах выбранной роли оператора.

Спецификация интерфейса, предоставляемого через ОРС UA, может быть загружена по адресу: https://opcfoundation.org/developer-tools/specifications-unified-architecture.

Для получения общей информации о работе и конфигурировании ПК «Бастион-3» рекомендуется ознакомиться с документами: «Бастион-3. Руководство администратора» и «Бастион-3. Руководство оператора».

2 Условия применения

На модуль «Бастион-3 – OPC UA Сервер» распространяются те же требования к аппаратной и программной платформе, что и для ПК «Бастион-3».

Для работы OPC UA сервера должны быть открыты сетевые порты, которые настраиваются в конфигурации модуля (по умолчанию 62561 и 62563).

Модуль совместим с ПК «Бастион-3» 2023.1 и выше.

1 Установка модуля

Модуль входит в комплект поставки ПК «Бастион-3». Для его установки в ОС Windows необходимо отметить соответствующую галочку в инсталляторе ПК «Бастион-3».

Для ОС Linux модуль поставляется в виде отдельного пакета формата DEB или RPM, с именем bastion3-opc *.

2 Настройка модуля

Для работы с модулем его необходимо включить в панели управления «Бастион-3».

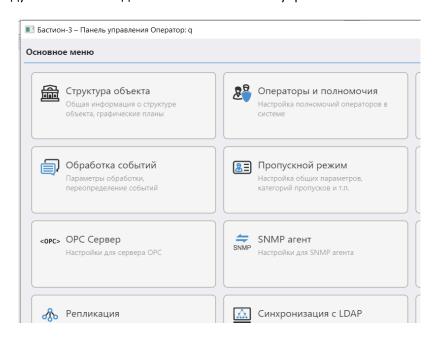


Рис. 2. Кнопка открытия страницы настроек модуля «Бастион-3 – OPC UA Сервер»

Пользовательский интерфейс страницы настроек модуля «Бастион-3 – OPC UA Сервер» представлен на Рис. 3.

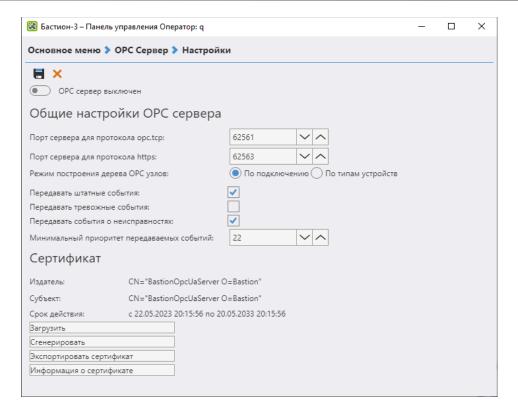


Рис. 3. Интерфейс страницы настроек модуля «Бастион-3 – OPC UA Сервер»

Здесь можно настроить:

- Порт ОРС сервера для протокола орс.tcp. По умолчанию установлено значение 62561;
- Порт ОРС сервера для протокола https. По умолчанию установлено значение 62563;
- Режим построения дерева ОРС-узлов. Доступно два значения «По подключению» и «По типам устройств»;
- Передавать штатные события. При отключении данной опции в ОРС не будут передаваться события с типом «штатное»;
- Передавать тревожные события. При отключении данной опции в ОРС не будут передаваться события с типом «тревога».
- Передавать события о неисправностях. При отключении данной опции в ОРС не будут передаваться события с типом «неисправность».
- Минимальный приоритет передаваемых событий. В ОРС не будут передаваться события, имеющие приоритет меньше значения данной настройки.

Внимание! При работе в среде Astra Linux порты орс.tcp и https следует выбирать из диапазона 1024 - 65535. Порты с номерами до 1024 могут использоваться только суперпользователем.

Для того, чтобы ОРС-сервер мог поддерживать подключения с шифрованием соединения необходим TLS-сертификат. Его можно сгенерировать на сервере системы, нажав кнопку "Сгенерировать".

Имеется возможность использовать свой сертификат, для этого нужно воспользоваться кнопкой «Загрузить», где в появившимся окне необходимо выбрать файл сертификата. Для этого сертификат должен быть экспортирован вместе с приватным ключом в файл формата pfx или p12. По стандарту PKSC#12 сертификат и закрытый ключ хранятся в одном зашифрованном файле, поэтому при загрузке сертификата понадобится ввести пароль от этого файла. Если сертификат загружен корректно и с правильным паролем, то в окне настроек появится издатель, субъект и срок действия сертификата. Если данные поля остались не заполненными, убедитесь в корректности сертификата и его пароля при вводе.

Для получения сертификата в виде файла в формате der необходимо воспользоваться кнопкой «Экспортировать сертификат», после чего выбрать место сохранения и имя, нажать на кнопку «Сохранить». Сертификат в виде файла в формате der можно использовать для размещения в хранилище сертификатов.

Для получения более полной информации о сертификате требуется нажать кнопку «Информация о сертификате», что приведёт к открытию диалогового окна с расширенной информацией.

Рекомендуется использовать сертификаты с алгоритмом шифрования RSA или ECDsa и алгоритмом подписи SHA256, SHA384 или SHA512.

3 Работа в штатном режиме

Запущенный сервер может быть обнаружен клиентом OPC UA ПΩ адресам «opc.tcp://<адрес>:<порт_OPC_TCP>/esprom.bastion.opc» «https://<адрес>:<порт_HTTPS>/esprom.bastion.opc».

В штатном режиме модуль не передаёт собственных событий в ПК «Бастион-3» и не имеет собственных элементов пользовательского интерфейса, кроме страниц панели управления.

Подключение клиента к серверу ОРС UA выполняется с логином и паролем оператора ПК «Бастион-3».

3.1 Получение списка устройств

Список устройств может быть получен в виде дерева узлов ОРС. Дерево узлов группируется в зависимости от настройки «Режим построения дерева ОРС-узлов»: по экземплярам драйверов ПК «Бастион-3» (значение «По типам устройств», пример на Рис. 4), либо по иерархии устройств драйверов ПК «Бастион-3» (значение «По подключению»).

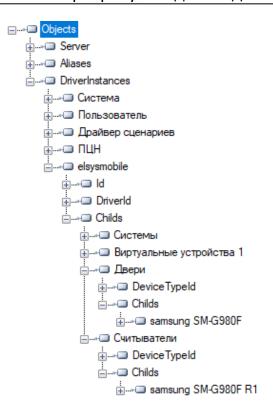


Рис. 4. Дерево узлов ОРС-сервера в режиме «По типам устройств»

Внимание! В дереве будут присутствовать только те устройства, для которых в роли оператора, с логином и паролем которого подключился клиент, имеется полномочие «Просмотр событий».

Список дочерних устройств доступен в узле «Childs».

3.2 Получение событий

События ПК «Бастион-3» передаются через интерфейс ОРС UA через установку значений свойств соответствующего устройству узла:

Имя свойства	Тип данных	Назначение
MsgText	STRING	Текст сообщения о событии
MsgCode	INTEGER	Код события
Params	STRING	Дополнительные параметры события в виде строки формата: PARAM1=VALUE1;PARAM2=Value2 Набор возможных параметров приведён ниже.
EventTime	DATETIME	Время возникновения события
MsgType	INTEGER	Тип события (1 - штатное, 2 - тревога, 3

		- неисправность)	
MsgPriority	INTEGER	Приоритет события (0-99)	
AdditionalParams	STRING	Дополнительные параметры события в виде строки формата: PARAM1=VALUE1;PARAM2=Value2 Набор возможных параметров приведён ниже.	

Через значения параметра params передаются дополнительные параметры события, связанного с картой доступа:

Имя параметра	Назначение параметра
fullcardcode	Полный код карты доступа (до 12 байт)
name	Фамилия владельца карты доступа
firstname	Имя владельца карты доступа
secondname	Отчество владельца карты доступа

Набор возможных дополнительных параметров события, передаваемых через значение параметра AdditionalParams представлен в таблице ниже. Параметры являются служебными и передаются в значении данного тега на тот случай, если основной информации о событиях будет недостаточно (например, в значение параметра detectedstr записывается распознанный номер транспортного средства). Информации обо всех возможных значениях параметров, передаваемых через значение тега AdditionalParams, в этом руководстве не приводится.

Имя параметра	Назначение параметра
detectedstr	Дополнительный строковый параметр
extdouble	Доп. параметр в формате числа с плавающей точкой
extint	Доп. параметр в формате целочисленного значения
extstr1	Дополнительный строковый параметр
extstr2	Дополнительный строковый параметр

Список возможных событий индивидуален для каждого типа устройств конкретного типа драйвера. Полную информацию о возможных событиях можно получить, обратившись к странице «События и команды», которая находится в группе «ОРС сервер» панели управления ПК «Бастион-3» (Рис. 5).

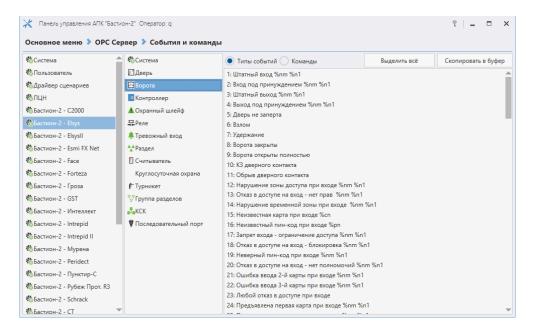


Рис. 5. Справочная информация о возможных событиях

3.3 Получение состояний устройств

Состояния устройств передаются с помощью установки значений следующих свойств соответствующего устройству узла:

Имя тега	Тип данных	Назначение
State	INTEGER	Код состояния устройства
StateText	STRING	Текст состояния устройства

Набор возможных состояний зависит от типа устройства и драйвера ПК «Бастион-3».

Полный перечень возможных состояний устройств приведен в приложении 2.

3.4 Получение параметров устройств

Следующие параметры соответствуют параметрам устройств - типу, имени, SDN (идентификатор) и идентификатору родительского устройства:

Имя тега	Тип данных	Назначение
DeviceType	INTEGER	Код типа устройства
SDN	INTEGER	SDN (уникальный идентификатор устройства)
DeviceNam e	STRING	Имя устройства
ParentID	INTEGER	Идентификатор родительского устройства

Значение параметра parentID устанавливается в "-1", если устройство не имеет родительского.

Перечень типов устройств и их кодов приведён в приложении 1.

3.5 Управление устройствами

Передача команд управления выполняется с помощью записи кода команды управления в свойство ControlCommand соответствующего устройству узла.

Передача параметров для команд управления в текущей версии не предусмотрена.

Полный перечень возможных команд управления зависит от набора используемых драйверов и состава используемого оборудования.

Информацию о возможных командах управления для конкретного типа устройства конкретного драйвера можно получить, обратившись к странице «События и команды», которая находится в группе «ОРС сервер» панели управления ПК «Бастион-3» (Рис. 6).

Внимание! Выполнение команд управления производится только в том случае, если у роли оператора, с логином и паролем которого подключился клиент, имеется полномочие на выполнение соответствующей команды для устройства.

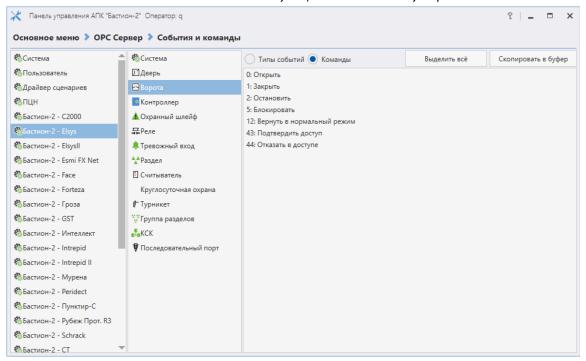


Рис. 6. Справочная информация о командах управления устройствами

4 Нештатные ситуации

4.1 Порт ОРС.ТСР занят другим процессом

Если порт, указанный в настройках в параметре «Порт сервера для протокола орс.tcp» занят другим приложением, то сервер ОРС не сможет запуститься запущен. В этом случае при запуске

сервера в отладочную консоль ПК «Бастион-3» будет выведено сообщение об ошибке, а клиент ОРС не сможет подключиться к серверу.

Необходимо выбрать другой порт в настройках, либо убедиться, что порт освобождён другим процессом.

4.2 Порт HTTPS занят другим процессом

Если порт, указанный в настройках в параметре «Порт сервера для протокола https» занят другим приложением, то сервер ОРС не сможет запуститься запущен. В этом случае при запуске сервера в отладочную консоль ПК «Бастион-3» будет выведено сообщение об ошибке, а клиент ОРС не сможет подключиться к серверу.

Необходимо выбрать другой порт в настройках, либо убедиться, что порт освобождён другим процессом.

4.3 TLS-сертификат просрочен

Для запуска сервера ОРС необходим TLS-сертификат. Если он отсутствует или просрочен, сервер не будет запущен. В этом случае при запуске сервера в отладочную консоль ПК «Бастион-3» будет выведено сообщение об ошибке, а клиент ОРС не сможет подключиться к серверу.

Необходимо загрузить новый актуальный сертификат, либо сгенерировать самозаверенный на странице настроек.

5 Приложения

Приложение 1. Типы устройств ПК «Бастион-3»

Код типа устройства	Название типа устройства
0	Система
1	Телекамера
2	Группа телекамер
3	Дверь
4	Ворота
5	Контроллер
6	Охранный шлейф
7	Металлодетектор
8	Пожарный шлейф
9	Тревожная кнопка
10	Реле
11	План
12	Тревожный вход

13	Раздел	
14	Адресный дымовой датчик	
15	Адресный тепловой датчик	
16	Адресная пожарная кнопка	
17	Адресный подшлейф	
18	Пожарная группа	
19	Считыватель	
20	Клавиатура	
21	Круглосуточная охрана	
22	Турникет	
23	Модуль мониторинга	
24	Модуль управления	
25	Шлюз	
26	Сервер	
27	Группа разделов	
28	КСК	
29	Оператор ОПС	
30	Пользователь ОПС	
31	Локальный раздел	
32	Адресное устройство	
33	Радиорасширитель	
34	Глобальный раздел	
35	Маршрут	
36	Контрольная точка	
37	Виртуальное устройство 1	
38	Виртуальное устройство 2	
39	Виртуальное устройство 3	
40	Сетевая группа	
41	Контроллер Elsys-MB-IP	
42	Последовательный порт	
43	Группа	
44	Панели Esa	
45	Контроллер	
46	Сценарий	
47	Группа ОПС	
48	Светильник	

Приложение 2. Состояния устройств

Полный перечень возможных кодов состояний устройств и их расшифровка приведены ниже. Большая часть этих состояний применяется только к ограниченному числу типов устройств (например, все состояния «с ограничением доступа» – применяются только для точек прохода).

Код	Состояние	Тип состояния
0	Неизвестно	Штатное
1	Норма	Штатное
2	Не активно, недоступно	Штатное
3	Снято с охраны	Штатное
4	Тревога	Тревога
5	Неисправность	Неисправность
6	Тревога при входе	Тревога
7	Тревога при выходе	Тревога
8	Тревога при входе с ограничением доступа	Тревога
9	Тревога при выходе с ограничением доступа	Тревога
10	Взлом	Тревога
11	Взлом при ограничении доступа	Тревога
12	Выполняется вход	Штатное
13	Выполняется вход при ограничении доступа	Штатное
14	Нормальное состояние при ограничении доступа	Штатное
15	Не активно при ограничении доступа	Штатное
16	Разблокировано при ограничении доступа	Штатное
17	Разблокировано	Штатное
18	Полуоткрыто	Штатное
19	Разблокировано при ограничении доступа	Штатное
20	Выполняется выход	Штатное
21	Выполняется выход при ограничении доступа	Штатное
22	Неисправность при закрытии	Неисправность
23	Неисправность при закрытии в режиме ограничения доступа	Неисправность

24	Удержание (двери)	Неисправность
25		Неисправность
26		Тревога
27		Тревога
28		Тревога
29		Штатное
30		Штатное
31	Включено (выход, реле)	Штатное
32	Выключено (выход, реле)	Штатное
33	Не готово к постановке на охрану	Неисправность
34	Активно, включено, на охране	Штатное
35	Точка прохода заблокирована	Штатное
36	Точка прохода не заперта	Тревога
37	Выполняется вход под принуждением	Тревога
38	Выполняется выход под принуждением	Тревога
39	Тревога и неисправность одновременно	Тревога
40	Проход (без указания направления)	Штатное
41	Видеозапись включена	Штатное
42	Турникет заблокирован на вход	Штатное
43	Турникет заблокирован на выход	Штатное
44	Турникет разблокирован на вход	Штатное
45	Турникет разблокирован на выход	Штатное
46	Турникет разблокирован на вход и заблокирован на выход	Штатное
47	Турникет заблокирован на вход и разблокирован на выход	Штатное
48	На охране не полностью (не все зоны взяты на охрану)	Штатное
49	Предтревога (предупреждение, используется для периметров)	Тревога

Приложение 3. История изменений 2023.3 (29.12.2023)

[+] Добавлена возможность фильтрации событий, передаваемых через OPC UA, по типу событий (штатные, тревоги, неисправности) и минимальному приоритету.

2023.2 (25.09.2023)

[+] Появились настройки, позволяющие включить фильтрацию передаваемых через ОРС событий по типам (штатные, тревоги и неисправности), а также по минимальному приоритету.

1.0 (07.07.2022)

[+] Первая версия модуля для ПК «Бастион-3».